
Locality Sensitive Hashing
(LSH)
Eduardo Tavares

Motivation

ü Description Based Image Retrieval (DBIR)

ü Content Based Image Retrieval (CBIR)

2

Common components of CBIR system

3

Nearest Neighbour Problem

ü Given: a set P of point in Rd

ü Nearest Neighbour: for any query q, returns a
point p ∈ P minimizing D(p,q)

ü r-Near Neighbour: for any query q, returns a
point p ∈ P such that D(p,q) ≦ r (if it exists)

4

Nearest Neighbour Problem

ü Given: a set P of point in Rd

ü Nearest Neighbour: for any query q, returns a
point p ∈ P minimizing D(p,q)

ü r-Near Neighbour: for any query q, returns a
point p ∈ P such that D(p,q) ≦ r (if it exists)

5

The case of d = 2

ü Compute Voronoi diagram

ü Given q, perform point location

ü Performance:
ü Space: O(n)
ü Query time: O(log n)

6

The case of d > 2

ü Voronoi diagram has size O(nd)

ü Another possibility: linear scan (O(dn) time)

ü That’s all that is known about exact algorithms with theoretical
guarantees.

ü In practice:
ü Kd-trees work “well” in “low-medium” dimensions: require sublinear

time and near linear space for d < 10 - 20

ü Time or space requirements grow exponentially in the dimension.

7

Problems: curse of dimensionality

8

The cost of exact matching

ü Finding the 10-NN of 1000 distinct queries in 1 million vectors
ü Assuming 128-D Euclidian descriptors

ü i.e., 1 billion distances, computed on a 8-core machine

9

The cost of exact matching

ü Finding the 10-NN of 1000 distinct queries in 1 million vectors
ü Assuming 128-D Euclidian descriptors

ü i.e., 1 billion distances, computed on a 8-core machine

ü 5.5 seconds

ü Hamming distance: 1000 queries, 1M database vectors:
Ê Computing the 1 billion distances: 0.6 second

10

Hamming Space

ü Definition: Hamming space is the set of all 2N binary strings of
length N.

ü Definition: The Hamming distance between two equal length
binary strings is the number of positions for which the bits are
different.

ü ||1011101; 1001001||H = 2

ü ||1110101; 1111101||H = 1

11

The cost of exact matching

ü To improve the scalability: find the nearest neighbour in
probability only: Approximate nearest neighbour (ANN)
search

ü An approximate nearest neighbour should suffice in most
cases.

12

Approximate Near Neighbour

ü c-Approximate r-Near Neighbour: build data
structure which, for any query q:
ü If there is a point p ∈ P, ||p – q|| ≦ r
ü it returns p’ ∈ P, ||p’ – q|| ≦ cr

ü Three (contradictory) performance criteria for ANN
schemes:

ü Search quality (retrieved vectors are actual nearest
neighbours)

ü Speed
ü Memory usage

13

Hashing

ü Hash function: any function 𝓗which has,
as a minimum, the following two
properties:

ü Compression

ü ease of computation

Locality Sensitive Hashing

ü Idea: project the data into a low-dimensional binary (Hamming)
space; while preserving some properties from the original space.

ü Construct hash functions h: Rd ⇾U such that for any points p, q:
ü If D(p,q)≦ r, then Pr[h(p) = h(q)] is “high”.

ü If D(p,q) > cr, then Pr[h(p) = h(q)] is “small”.

ü Then we can solve the problem by performing hash table lookup.

ü LSH is a general framework; for a given D we need to find the right h.

15

LSH [Indyk-Motwani’98]

ü A family 𝓗 of functions h: Rd ⇾U is called (P1, P2, r, cr)-
sensitive , if for any p, q:

ü If D(p,q) < r, then Pr[h(p) = h(q)] > P1

ü If D(p,q) > cr, then Pr[h(p) = h(q)] < P2.
ü P1 > P2.

16

Bit sampling

ü Works for the Hamming distance over d-dimensional vectors
{0,1}d.

ü The family 𝓗 of hash functions is simply the family of all the
projections of points in one of the d coordinates.

ü 𝓗 = {h : {0,1}d⇾ {0,1} | h(x) = xi for some i∈ {1, …, d}, where xi
is the ith coordinate of x.

ü A random function h from𝓗 simply selects a random bit
from the input point.

17

Algorithm: preprocessing

ü Hash the data-point using several LSH functions (gi(.) = { h1(.) …hk(.) }) so
that probability of collision is higher for closer objects

18

Algorithm: preprocessing

19

Algorithm : cr - NNS Query

20

Random hyperplane based LSH

ü Selects b hash functions hr(·), each of which simply rounds the
output of the product of x with a random hyperplane defined by a
random vector r:

21

Random hyperplane based LSH

ü Selects b hash functions hr(·), each of which simply rounds the output of
the product of x with a random hyperplane defined by a random vector r:

22

Random hyperplane based LSH

ü Selects b hash functions hr(·), each of which simply rounds the
output of the product of x with a random hyperplane defined by a
random vector r:

23

Random hyperplane based LSH

ü Selects b hash functions hr(·), each of which simply rounds the
output of the product of x with a random hyperplane defined by a
random vector r:

24

Random hyperplane based LSH

ü Compare a to points with same hash-code
• b … indeed similar to a

• d ... false positive, will be eliminated

• c ... different hash-code, will miss it

25

Random hyperplane based LSH

ü Repeat with different hyperplanes

26

How to search from hash table?

27

How to search from hash table?

28

How to search from hash table?

29

How to search from hash table?

[Kristen Grauman et al] (modified) 30

Performance

ü Data Sets
ü Color images from COREL Draw library (20,000 points,dimensions up

to 64)
ü Texture information of aerial photographs (270,000 points,

dimensions 60)

ü Evaluation
ü Speed, Miss Ratio, Error (%) for various data sizes,

dimensions, and K values
ü Compare Performance with SR-Tree (Spatial Data

Structure)

31

Speed vs. Data Size

Approximate 1 - NNS

0
2
4
6
8

10
12
14
16
18
20

0 5000 10000 15000 20000
Number of Database Points

D
is

k
A

cc
es

se
s LSH, error = 0.2

LSH, error = 0.1
LSH, error = 0.05
LSH, error =0.02
SR-Tree

32

Speed vs. Dimension

Approximate 1-NNS

0
2
4
6
8

10
12
14
16
18
20

0 20 40 60 80

Dimensions

Di
sk

 A
cc

es
se

s LSH , Error = 0.2
LSH, Error = 0.1
LSH, Error = 0.05
LSH, Error = 0.02
SR- Tree

33

Speed vs. Error

0
50
100
150
200
250
300
350
400
450

10 20 30 40 50

Error (%)

D
is

k
A

cc
es

se
s

SR-Tree
LSH

34

Analysis

ü LSH solves c-approximate NN with:
ü Number of hash functions: L = n𝛒

ü 𝛒 = log(1/P1)/log(1/P2)
ü E.g., for the Hamming distance we have 𝛒 = 1/c
ü Constant success probability per query q

ü Questions:
ü Can we extend this beyond Hamming distance?
ü Can we reduce the exponent 𝛒?

35

Analysis

Distance metric 𝛒 = (ln 1 / p1)/ (ln 1 / p2) c = 2 Reference

Euclidean (l2) ≦ 1/c2 + o(1) 1/4 [Andoni, Indyk 2006]

≧ 1/c2 - o(1) [O’Donnell, Wu, Zhou 2011]

1
2𝑐2 − 1 + o(1)

1/7 [Andoni, R 2015]

Hamming (l1) ≦ 1/c 1/2 [Indyk, Motwani 1998]

≧ 1/c – o(1) [O’Donnell, Wu, Zhou 2011]

1
2𝑐 − 1 + o(1)

1/3 [Andoni, R 2015]

36

Categorization of LSH approaches

ü Number of bucket sets

ü Shape of hash functions – (bit sampling, hyperplane, sine function,
hypersphere)

ü Data dependency

ü Supervision

ü Quantization - (single-bit quantization, multi-bits quantization)

37

Comparison [Lee, 2012]

38

Acknowledgments

39

References

Jin, J. S. (2003). Indexing and Retrieving High Dimensional Visual Features, pages 178–
203. Springer Berlin Heidelberg, Berlin, Heidelberg.

Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., and Equitz,
W. (1994). Efficient and effective querying by image content. Journal of Intelligent
Information Systems, 3(3):231–262.

Idris, F. and Panchanathan, S. (1997). Review of image and video indexing techniques.
J. Vis. Comun. Image Represent., 8(2):146–166.

Wang, J., Shen, H. T., Song, J., and Ji, J. (2014). Hashing for similarity search: A survey.
CoRR, abs/1408.2927.

40

