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Motivation

ü Description Based Image Retrieval (DBIR)

ü Content Based Image Retrieval (CBIR)
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Common components of CBIR system
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Nearest Neighbour Problem

ü Given: a set P of point in Rd

ü Nearest Neighbour: for any query q, returns a 
point p ∈ P minimizing D(p,q)

ü r-Near Neighbour: for any query q, returns a 
point p ∈ P such that D(p,q) ≦ r (if it exists)
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The case of d = 2

ü Compute Voronoi diagram

ü Given q, perform point location

ü Performance:
ü Space: O(n)
ü Query time: O(log n)
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The case of d > 2

ü Voronoi diagram has size O(nd)

ü Another possibility: linear scan (O(dn) time)

ü That’s all that is known about exact algorithms with theoretical 
guarantees.

ü In practice:
ü Kd-trees work “well” in “low-medium” dimensions: require sublinear 

time and near linear space for d < 10 - 20

ü Time or space requirements grow exponentially in the dimension.
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Problems: curse of dimensionality
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The cost of exact matching

ü Finding the 10-NN of 1000 distinct queries in 1 million vectors
ü Assuming 128-D Euclidian descriptors

ü i.e., 1 billion distances, computed on a 8-core machine
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The cost of exact matching

ü Finding the 10-NN of 1000 distinct queries in 1 million vectors
ü Assuming 128-D Euclidian descriptors

ü i.e., 1 billion distances, computed on a 8-core machine

ü 5.5 seconds

ü Hamming distance: 1000 queries, 1M database vectors:
Ê Computing the 1 billion distances: 0.6 second
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Hamming Space

ü Definition: Hamming space is the set of all 2N binary strings of 
length N. 

ü Definition: The Hamming distance between two equal length 
binary strings is the number of positions for which the bits are 
different. 

ü ||1011101; 1001001||H = 2 

ü ||1110101; 1111101||H = 1 
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The cost of exact matching

ü To improve the scalability: find the nearest neighbour in 
probability only: Approximate nearest neighbour (ANN) 
search

ü An approximate nearest neighbour should suffice in most 
cases.
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Approximate Near Neighbour

ü c-Approximate r-Near Neighbour: build data 
structure which, for any query q:
ü If there is a point p ∈ P, ||p – q|| ≦ r
ü it returns p’ ∈ P, ||p’ – q|| ≦ cr

ü Three (contradictory) performance criteria for ANN 
schemes:

ü Search quality (retrieved vectors are actual nearest 
neighbours)

ü Speed
ü Memory usage
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Hashing

ü Hash function: any function 𝓗which has, 
as a minimum, the following two 
properties:

ü Compression

ü ease of computation



Locality Sensitive Hashing

ü Idea: project the data into a low-dimensional binary (Hamming) 
space; while preserving some properties from the original space.

ü Construct hash functions h: Rd ⇾U such that for any points p, q:
ü If D(p,q)≦ r, then Pr[h(p) = h(q)] is “high”.

ü If D(p,q) > cr, then Pr[h(p) = h(q)] is “small”.

ü Then we can solve the problem by performing hash table lookup.

ü LSH is a general framework; for a given D we need to find the right h.
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LSH [Indyk-Motwani’98]

ü A family 𝓗 of functions h: Rd ⇾U is called (P1, P2, r, cr)-
sensitive , if for any p, q:

ü If D(p,q) < r, then Pr[h(p) = h(q)] > P1

ü If D(p,q) > cr, then Pr[h(p) = h(q)] < P2.
ü P1 > P2.
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Bit sampling

ü Works for the Hamming distance over d-dimensional vectors 
{0,1}d.

ü The family 𝓗 of hash functions is simply the family of all the 
projections of points in one of the d coordinates.

ü 𝓗 = {h : {0,1}d⇾ {0,1} | h(x)  = xi for some i∈ {1, …, d}, where xi
is the ith coordinate of x.

ü A random function h from𝓗 simply selects a random bit 
from the input point.
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Algorithm: preprocessing

ü Hash the data-point using several LSH functions (gi(.) = {  h1(.) …hk(.) }) so 
that probability of collision is higher for closer objects
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Algorithm: preprocessing
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Algorithm : cr - NNS Query
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Random hyperplane based LSH

ü Selects b hash functions hr(·), each of which simply rounds the 
output of the product of x with a random hyperplane defined by a 
random vector r: 

21



Random hyperplane based LSH

ü Selects b hash functions hr(·), each of which simply rounds the output of 
the product of x with a random hyperplane defined by a random vector r: 

22



Random hyperplane based LSH

ü Selects b hash functions hr(·), each of which simply rounds the 
output of the product of x with a random hyperplane defined by a 
random vector r: 

23



Random hyperplane based LSH

ü Selects b hash functions hr(·), each of which simply rounds the 
output of the product of x with a random hyperplane defined by a 
random vector r: 

24



Random hyperplane based LSH

ü Compare a to points with same hash-code
• b … indeed similar to a

• d ... false positive, will be eliminated

• c ... different hash-code, will miss it
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Random hyperplane based LSH

ü Repeat with different hyperplanes
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How to search from hash table?
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How to search from hash table?

28



How to search from hash table?
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How to search from hash table?

[Kristen Grauman et al] (modified) 30



Performance

ü Data Sets
ü Color images from COREL Draw library (20,000 points,dimensions up 

to 64)
ü Texture information of aerial photographs (270,000 points, 

dimensions 60)

ü Evaluation
ü Speed, Miss Ratio, Error (%) for various data sizes, 

dimensions, and K values
ü Compare Performance with SR-Tree  ( Spatial Data 

Structure )

31



Speed vs. Data Size

Approximate 1 - NNS 
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Speed vs. Dimension

Approximate 1-NNS
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Speed vs. Error
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Analysis

ü LSH solves c-approximate NN with:
ü Number of hash functions: L = n𝛒

ü 𝛒 = log(1/P1)/log(1/P2)
ü E.g., for the Hamming distance we have 𝛒 = 1/c
ü Constant success probability per query q

ü Questions:
ü Can we extend this beyond Hamming distance?
ü Can we reduce the exponent 𝛒?
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Analysis

Distance metric 𝛒 = (ln 1 / p1 )/ (ln 1 / p2) c = 2 Reference

Euclidean (l2) ≦ 1/c2 + o(1) 1/4 [Andoni, Indyk 2006]

≧ 1/c2 - o(1) [O’Donnell, Wu, Zhou 2011]

1
2𝑐2 − 1 + o(1)

1/7 [Andoni, R 2015]

Hamming (l1) ≦ 1/c 1/2 [Indyk, Motwani 1998]

≧ 1/c – o(1) [O’Donnell, Wu, Zhou 2011]

1
2𝑐 − 1 + o(1)

1/3 [Andoni, R 2015]
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Categorization of LSH approaches

ü Number of bucket sets

ü Shape of hash functions – (bit sampling, hyperplane, sine function, 
hypersphere)

ü Data dependency

ü Supervision

ü Quantization - (single-bit quantization, multi-bits quantization) 
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Comparison [Lee, 2012]
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