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Introduction

Introduction

The world is full of tiny but useful objects such as the door handle of a car
or the light switch in a room

Little landmarks

In an image it is barely visible, yet we know where it is

They do not have a distinctive appearance of their own

Largely defined by their context
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Introduction

Little Landmarks in a Car

Figure: Several objects of interest are so tiny that they barely occupy few pixels
(top-left), yet we interact with them daily. Localizing such objects in images is difficult
as they do not have a distinctive local appearance.
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Introduction

Motivations

Motivations

Appearance may be similar to many other regions in the image

May occur in a consistent spatial configuration

Location pattern according to other objects

Latent Landmark

May itself be hard to localize
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Introduction

Overview and Contributions

Overview

Approach for discovering globally distinctive patterns

Supervised only by the location of the target

The first latent landmark in the sequence must be localizable on its own

Sequence of spatially dependent latent landmarks
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Introduction

Overview and Contributions

Overview

Handcrafted loss function

First latent landmarks must predict the next latent landmark

Last latent landmark must predict the target location

Deep Convolutional Neural Network (CNN)
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Introduction

Overview and Contributions

Contributions

Novel and intuitive approach to localize little landmarks automatically

Recurrent architecture using Fully Convolutional Networks

Spatial information representation for prediction of locations

Two new little landmark datasets

Code and datasets are publicly available1

1
http://vision.cs.illinois.edu/projects/litland/

http://vision.cs.illinois.edu/projects/litland/
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Related Works

Related Works

Well studied areas

Landmark localization

Human pose estimation [2, 3, 4]

Bird part localization [5, 6, 7]

Localization of larger objects [8, 9]

Practically no work exists for localizing little landmarks
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Related Works

Related Works

Karlinsky et al. [10] is conceptually most related to the paper

Keypoint proposals

Intermediate set of locations

Path from a known landmark to a target

Current approach

Does not use keypoints

Learns to find the first landmark
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Approach

Baseline

Detection

Simplest scheme for finding landmarks

Direct supervision for locations

Do not work for little landmarks
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Approach

Baseline

Prediction

Single latent landmark to predict the location of the target

Target could be far way

Hard task because there is no supervision for the latent landmark

Outperforms Detection
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Approach

Approach

Sequential Prediction

Sequential prediction scheme

Iteratively uses a latent landmark to predict the location of another latent
landmark

Outperforms Prediction
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Approach

Architecture

Model and Inference

Fully convolutional network architecture

Shared and step-specific layers

Step-specific parameters allow the features of a step to quickly adapt

Loss function penalizes disagreements between predicted and later
detected locations
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Architecture

Architecture

Figure: In each step a latent landmark (red blobs) predicts the location of the latent
landmark for the next step. This is encoded as a feature map with radial basis kernel
(blue blob) and passed as a feature to the next step.
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Architecture

Architecture

Figure: Orange, purple and blue show step specific layers.
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Approach

Location Learning

Prediction Scheme

Image as grid of locations li , i ∈ {1, ...,L}

Each step s produces an estimation P(s) of the next latent landmark
position

Each location li produce an estimate p(s)
i for P(s) with confidence c(s)i

P(s) = ∑
L
i=1 c(s)i p(s)

i



21/48

Learning to Localize Little Landmarks [1]

Approach

Location Learning

Prediction Scheme

p(s)
i is obtained by analysing both the image features and the predicted

location in the previous step P(s−1)

c(s)i is a softmax over all locations

c(s)i = ez
(s)
i

∑i ez
(s)
i

z(s)
i ∈ R is the output from the network at li in step s
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Approach

Location Learning

Prediction Scheme

P(s) as a feature map

A Radial Basis kernel is placed centered in P(s)

Add some “stochasticity” to the process

Allow the next step to easily ignore P(s), if needed
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Approach

Location Learning

Prediction Scheme

P(s) as a weighted average

Robust to individual variances

All locations are initialized with non-zero

All locations are potential latent landmarks
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Approach

Location Learning

Location Estimation

How to generate p(s)
i at li at step

s?

Simple regression works
poorly

gj (∗) ∈ {−50,−25,0,25,50}

Local grid of G points over li

o(s)j,i

g(s)
j

p(s)i = li +∑
G
j=1 o(s)j,i gj
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Approach

Location Learning

Loss Function

L2

Requires careful tuning of learning rate

Huber Loss

H (x) =

{
x2

2δ
, if |x |< δ

|x |− δ

2 , otherwise

Robustness

Gradients are exactly one for large loss values (|x |> δ )

Gradients are less than one for smaller loss values (|x |> δ )

δ = 1
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Approach

Location Learning

Loss Function

L(s) =H
(
P(s)− y∗(s)

)
+ γ ∑

L
i=1 c(s)i H

(
p(s)

i − y∗(s)
)

The first term enforces that the prediction P(s) coincides with the target
y∗(s)

The scale factor γ (empirically set to 0.1)

The second term enforces that the individual predictions for each location
also fall on the target, but the individual losses are weighted by their
contribution (c(s)i )
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Experiments

Datasets

Two New Datasets

Light Switch Dataset (LSD)

Car Door Handle Dataset (CDHD)

Based on the Stanford Car Dataset 2

2
http://ai.stanford.edu/~jkrause/cars/car_dataset.html

http://ai.stanford.edu/~jkrause/cars/car_dataset.html
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Experiments

Datasets

Repurposed Datasets

Caltech UCSD Birds Dataset (CUBS) 3

Beak location

Leeds Sports Dataset (LSP) 4

Wrist location

3
http://www.vision.caltech.edu/visipedia/CUB-200.html

4
http://www.comp.leeds.ac.uk/mat4saj/lsp.html

http://www.vision.caltech.edu/visipedia/CUB-200.html
http://www.comp.leeds.ac.uk/mat4saj/lsp.html
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Experiments

Experiments

Evaluation Metrics

LSD, CDHD, LSP

2D Plot

y -axis = Detection Rate

x-axis = Normalized Distance from Ground Truth

CUBS

PCP as used in [5]



37/48

Learning to Localize Little Landmarks [1]

Experiments

Experiments

Results and Discussion

CDHD

Img Reg
↓

VGG-16

Table: Detection Rates for CDHD. Values for normalized
distance of 0.02.

Seq Prediction
Method Img Reg Det Pred Pred 2 Pred 3

Detection Rate 6.1 19.2 54.3 63.3 74.4
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Experiments

Results and Discussion
CDHD

Img Reg
↓

VGG-16

Figure: Step 1 - Red. Step 2 - Green. Step 3 - Blue. The system finds the wheel as
the first latent landmark and then moves towards the door handle.
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Experiments

Experiments

Results and Discussion

LSD

Img Reg
↓

VGG-16

Table: Detection Rates for LSD. Values for normalized
distance of 0.5.

Seq Prediction
Method Img Reg Det Pred Pred 2 Pred 3

Detection Rate 1.5 41.0 44.5 47.5 51.0
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Experiments

Experiments

Results and Discussion
LSD

Img Reg
↓

VGG-16

Figure: Step 1 - Red. Step 2 - Green. Step 3 - Blue. The system relies on finding the
edge of the door first.
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Experiments

Experiments

Results and Discussion

UCSD

Img Reg
↓

VGG-16

Table: PSP for UCSD.

Methods PCP
Liu et al. [5] 49.0
Liu et al. [6] 61.2

Shih et al. [7] 51.8
Proposed 64.1
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Img Reg
↓
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Figure: Step 1 - Red. Step 2 - Green. Step 3 - Blue. The first landmark tends to be on
the neck, followed by one near the eye and the last tends to be outside at the curve of
neck and beak
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Conclusion

Conclusions

Recognizable atterns emerged solely from the supervision of the target
landmark

Adapt to the evidence in the image

The method does not impose any hard constraints

Later steps can choose to ignore the evidence from earlier steps
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Conclusion

Conclusions

Strong performance in the tasks

Success attributed from the spatial prediction scheme

Future work

Multiple targets

Directed Graphs of latent landmarks

Accumulation from features of previous steps
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