Loss functions and learning algorithms for neural
network

Rafael Baeta

Universidade Federal de Minas Gerais
Departamento de Ciéncia da Computagao

26 de maio de 2017

— UFMG

DEPARTAMENTO DE
CIENCIA DA COMPUTACAO

1/46

Introduction

- We often use neural networks as a black box
- Some parts of the Neural network receive less importance
- A complete neural network architecture can be, in a simplified way,
composed of:
@ Layers (Convolution, Max Pooling, Fully Connected, etc)
@ Learning algorithm (Gradient descent, Newton’s method, etc)
@ Loss function (NLL, Cross Entropy, Quadratic Cost, etc)
@ Classifier (softmax, SVM, etc)

2/46

Introduction

- Normally we use a know architeture

Figura : AlexNet

—
92 128 048
13
. >
13 dense
192 128 Max L]
Max 128 Max pooling 04
pooling pooling

"https://kratzert.github.io/2017/02/24/finetuning-alexnet-with-tensorflow. html

——
dense|

oag \dense

1000

3/46

Introduction

- Define default parameters (AlexNet)

@ Learning rate: 0.01

@ Weight decay: 0.0005

@ Momentum: 0.9

@ Learning algorithm: SGD

4/46

Introduction

@ if acc > 90%
o Right. Let’s write a paper

5/46

Introduction

@ if acc > 90%
o Right. Let’s write a paper
@ else

e Cry and try to change number of layers, neurons, parameters and lastly
data.

6/46

Introduction

But...

7/46

Introduction

But...

And the loss function and learning algorithm?

8/46

Introduction

But...
What about the loss function and the learning algorithm?

They don’t change anything?

9/46

Loss functions

@ A loss function measures the model error
@ ltis used whenever the model is updated
@ The aim of the learning algorithm is to minimize this function

10/46

Loss functions

Example:

Suppose we have an advertisement on a website:

@ We have a bid and revenue for click.

@ We want to maximize our revenue by accurately predicting a click
@ And we want to minimize our cost

So, we have:

L(p) =} bxpi—(rc*yi)pi Q)

where: b = fixed bid, p; = prediction, r; = revenue and y; = right prediction

11/46

Loss functions

In this equation we have 2 parts:

@ A penalty when you miss a prediction.
@ And a cost minization part

So, we have:

L(p) =Y. b (penalty) xp; — (1o * y;)pi (cost minimization)
where:

b = fixed bid, p; = prediction, r. = revenue and y; = right prediction

12/46

Loss functions

In our example supposse a prediction vector (p;) and groundtruth vector (y;).

In a ideal case we have all pj == y;, so, for b= 10, r, =20 and n = 4:
L(p) = Y b*p; (penalty) —(re* y;)pi (cost minimization)
L(p) = 4% (10—20) = 4% (—10) = —40
The worse case is when all p;! = y; and p have only one, in this case, we have:

L(p) = 4%10 = 40

13/46

Loss functions

Foran p;=10,1,1,0,1and y; = 1,1,1,0,0 we have:

L(p) = ¥ b* p; (penalty) —(rs * yi)p; (cost minimization)

L(p) =10%0— (20% 1) %0+ @)

14/46

Loss functions

Foran p;=10,1,1,0,1and y; =1,1,1,0,0 we have:

L(p) =Y b*p; (penalty) —(rs* y;)p; (cost minimization)

L(p) =10%0— (20 1) %0+
2% (101 —(20%1) % 1)+

15/46

Loss functions

Foran p;=0,1,1,0,1and y; =1,1,1,0,0 we have:
L(p) =Y. b*p; (penalty) —(re* y;)pi (cost minimization)
L(p) =10%0— (20% 1) % 0+

25(10%1— (20%1) % 1)+ (4)
10%0—(20%1) * 0+

16/46

Loss functions

Foran p;=0,1,1,0,1and y; = 1,1,1,0,0 we have:
L(p) =Y bx*p; (penalty) —(rs* y;)p; (cost minimization)
L(p) =10%x0— (20 1) %0+
2% (10%x1—(20%1)*1)+

10%0— (20% 1) * 0+
101 — (20%0) %1 = —10

17/46

Loss functions

symbol | name equation

Z Ly loss [ly — ol

2 L, loss lly —oll3

Z 00 | expectation loss [ly —o(0)||1

% o0 | regularised expectation loss | ||y — G(o)| |5

%00 | Chebyshev loss max;|c (o) — y V|

log log (cross entropy) loss -Y y logo (o)

log? squared log loss -Y,y0 Iogcf(o)/']2

hinge | hinge (margin) loss Y, max(0, 1 — §ol))

hinge® | squared hinge (margin) loss | ¥, max(0, 3 —y(/)o(f))

hinge® | cubed hinge (margin) loss Y, max(0, 3 — §ol))3
— [OI%0

tan Tanimoto loss oo)Hzﬁ‘;‘(zo)zlyc(o)o 7y

Dcs Cauchy-Schwarz Divergence | —I %

where y is true label as one-hot coding, ¥ is true label as +1/-1, o is the output
of the last layer, o(.) denotes probability

18/46

Loss functions - %),

@ .7, is considered regressive losses

@ .7, applied to the probability leads to minimization of expected
misclassification probability (£, 0 0')

@ This property become %, o ¢ robust to outliers/noise
@ But, these loss functions are not popular? Why?

19/46

Loss functions - %),

@ It don’t have monotonic partial derivatives

@ Because of this, learning becomes slow in heavily misclassified examples

Proof:

(6)
where a = 6(z), where z = wx + b and o are the sigmoid function

9 —(a- o' =a0'(2))

3? = (a—y)o'(z)x = ac’(z) (8)

20/46

Loss functions - %),

@ Let’s look for the shape of o function

1 S

(1+exp(-t)

9C _ a6'(z) and 2€ = ac’(z
ow db

2
Zhttps://en.wikipedia.org/wiki/ Talk%3ASigmoid_function 21/46

Loss functions - Cross Entropy

@ Log loss function (Cross entropy) minimize the same way

@ But, this function is not affected by slow learning

@ This is because 6'(z) is eliminated in the cost equation

@ Therefore, it correctly penalizes heavily misclassified examples

9o = 2 Lex(0(2) —y) and 5 = 1Y, (a(2) ~y)

22/46

Loss functions - Hinge Loss

@ Hinger loss is used for "maximum-margin” classification

@ Commonly used for support vector machines (SVM) for binary problems

Ex: For a output t = +/- 1 and a classifier score y the hinge loss of y is:

I(y) = max(0,1 —txy)

wherey =w*x + b

23/46

Loss functions - Hinge Loss

@ Hinger loss can be extended to the multiclass classification:
I(y) = max(0,1+ max.., WX — W, X)°

I(y) = Zt;ﬁy max(0,1 + WtX— Wy)()4

3Koby Crammer e Yoram Singer. “On the algorithmic implementation of multiclass
kernel-based vector machines”. Em: Journal of machine learning research 2.Dec (2001),
pp. 265—-292.

4Urtin Dogan, Tobias Glasmachers e Christian Igel. “A unified view on multi-class support
vector classification”. Em: Journal of Machine Learning Research 17.45 (2016), pp. 1-82. 546

Loss functions - Hinge Loss

@ Hinger loss is a convex function, so convex optimizers in machine
learning can work (SGD):

@ But, it is not differentiable at ty=1!

@ However, there exist subgradient and smoothed versions®:

-y, if ty <0
y)=41-(1—-ty)? ifo<ty<i (9)
0, if1<ty

5Jason DM Rennie e Nathan Srebro. “Loss functions for preference levels: Regression with
discrete ordered labels”. Em: Proceedings of the IJCAI multidisciplinary workshop on

advances in preference handling. Kluwer Norwell, MA. 2005, pp. 180—-186. 25/46

Loss functions - High order

@ High order for hinge losses help in speed and final performance
@ This does not hold for higher order log losses
@ And for .%, its help to reduce the high penalties

26/46

Loss functions

i
] /74
Fye Y 20

Figura : Train and test on MNIST and Cifar

xxxxxxxxxxx

6

8Katarzyna Janocha e Wojciech Marian Czarnecki. “On Loss Functions for Deep Neural
Networks in Classification”. Em: arXiv preprint arXiv:1702.05659 (2017). 27/46

Loss functions

— log*

Figura : Robust for noise in MNIST

7Janocha e Czarnecki, “On Loss Functions for Deep Neural Networks in Classification”.

28/46

Learning algorithm

A learn algorithm is used to teach the neural network. The most commonly
used learning algorithm is Gradient descent and there are a some others:
@ Newton’s method
@ Conjutage gradient
@ Quasi Newton
@ Levenberg Marquardt

29/46

Learning algorithm - Memory and speed comparison

MemoryT
Levenberg
Marquardt
Quasi
Newton
Newton
method
Conjugate
gradient
Gradient
descent
Speed

Figura : Comparison of optimization methods

8
Shttps://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network. 30/46

Learning algorithm - Gradient descent

There are three ways to use GD:

@ Batch gradient descent
@ Stochastic gradient descent
@ Mini-batch gradient descent

31/46

Learning algorithm - Gradient descent
Gradient descent try to minimize a loss function J(0):

The parameters are updated following the equation bellow:

0=0-—1%VyJ(6) (10)
9

9https://stackoverflow.com/questions/35711315/gradient-descent-vs-stochastic-gradient-
descent-algorithms 32/46

Learning algorithm - Gradient descent variations

There are some variations of gradient descent:

@ Momentum
@ Nesterov
@ Adagrad
@ Adadelta
@ RMSprop
@ Adam

33/46

Learning algorithm - Gradient descent variations -
Momentum

@ SGD has trouble where the surface curves much more steeply in one
dimension than in another

@ Momentum helps accelerate SGD in relevant direction

Uy = YVr—1 +NVed(6)
6=06-— Ut

34/46

Learning algorithm - Gradient descent variations -
Momentum

@ Essentially, when using momentum, we push a ball down a hill.

@ The ball accumulates momentum as it rolls downbhill.

SGD without momentum SGD with momentum

"Chttp://sebastianruder.com/optimizing-gradient-descent/index.htm 35/46

Learning algorithm - Gradient descent variations -
Nesterov

@ But, a ball that rolls down a hill, blindly following the slope, is highly
unsatisfactory.

@ What if we had a ball that knows where it's going?

Uy = YVr—1 +NVed(6 — Y1)
6=06-— Ut

36/46

Learning algorithm - Gradient descent variations -
Nesterov

@ Computing 6 — yv;_1 thus gives us an approximation of the next position
of the parameters.

@ We can now calculate the approximate future position of our parameters

Figura : Nesterov update

11

" http://sebastianruder.com/optimizing-gradient-descent/index.htm 37/46

Learning algorithm - Gradient descent variations -
Adagrad

@ It's adapts the learning rate to the parameters.

@ Larger updates for infrequent and smaller updates for frequent
parameters

91i = VedJ(6))

Or11,i =0 —MN*gei

38/46

Learning algorithm - Gradient descent variations -
Adagrad

@ Modifies the general learning rate V at each step t for each parameter 6;.
@ It's done based on the past gradients that have been computed for 6;

61+1 i— 9t i \/ﬁ

39/46

Learning algorithm - Gradient descent variations -
Adagrad

@ The main benefits of Adagrad are that it eliminates the need to manually
adjust the learning rate

@ lts main weakness is its accumulation of square gradients in the
denominator

@ As each term added is positive, the accumulated sum continues to grow
during training

@ The learning rate eventually becomes infinitesimally small

40/46

Learning algorithm - Gradient descent variations -
Adadelta

@ Adadelta is an extension of Adagrad
@ lts tries to reduce his aggressiveness

@ Adadelta constrains the window of accumulated past gradients to some
fixed size w

@ Instead of inefficiently storing previous square gradients, the sum of the
gradients is defined recursively as a decaying average of the entire past
square gradient

n

6H—17i = 6t,i - \/ﬁ

41/46

Learning algorithm - Gradient descent variations -
RMSProp and Adam

@ Same objective of Adadelta

@ Adam, RMSProp and Adadelta share the exponentially decreasing
average of square gradients

@ Adadelta has moving average biased by initialization of decay parameters
@ Adam has bias correction

42/46

Conclusion

@ We must pay attention to all parts of an architecture
@ ltis difficult to choose a loss function depending on the problem

@ Aloss function and a learning algorithm suitable for a problem can have a
major impact on performance

43/46

References |

5 algorithms to train a neural network.
https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network

Chen, Si e Yufei Wang. “Convolutional neural network and convex
optimization”. Em: Dept. of Elect. and Comput. Eng., Univ. of California at
San Diego, San Diego, CA, USA, Tech. Rep (2014).

Crammer, Koby e Yoram Singer. “On the algorithmic implementation of
multiclass kernel-based vector machines”. Em: Journal of machine learning
research 2.Dec (2001), pp. 265—292.

CS231n Convolutional Neural Networks for Visual Recognition.
http://cs231n.github.io/neural-networks-3/.

CS231n Convolutional Neural Networks for Visual Recognition - Optimization.
http://cs231n.github.io/optimization-1/.

44/46

References Il

| Dogan, Urlin, Tobias Glasmachers e Christian Igel. “A unified view on
multi-class support vector classification”. Em: Journal of Machine Learning
Research 17.45 (2016), pp. 1-32.

How do you decide which loss function to use for machine learning?
https://www.quora.com/How-do-you-decide-which-loss-function-to-use-for-
machine-learning.

Improving the way neural networks learn.
http://neuralnetworksanddeeplearning.com/chap3.html.

Janocha, Katarzyna e Wojciech Marian Czarnecki. “On Loss Functions for
Deep Neural Networks in Classification”. Em: arXiv preprint
arXiv:1702.05659 (2017).

Optimization for Deep Networks.
http://www.cs.cmu.edu/ imisra/data/Optimization_2015_11_11.pdf.

45/46

References lli

| Rennie, Jason DM e Nathan Srebro. “Loss functions for preference levels:
Regression with discrete ordered labels”. Em: Proceedings of the IJCAI
multidisciplinary workshop on advances in preference handling. Kluwer
Norwell, MA. 2005, pp. 180—-186.

| Ruder, Sebastian. “An overview of gradient descent optimization algorithms”.
Em: arXiv preprint arXiv:1609.04747 (2016).

46/46

