
Loss functions and learning algorithms for neural
network

Rafael Baeta

Universidade Federal de Minas Gerais
Departamento de Ciência da Computação

26 de maio de 2017

CCD

1/46

2/46

Introduction

- We often use neural networks as a black box
- Some parts of the Neural network receive less importance
- A complete neural network architecture can be, in a simplified way,
composed of:

Layers (Convolution, Max Pooling, Fully Connected, etc)

Learning algorithm (Gradient descent, Newton’s method, etc)

Loss function (NLL, Cross Entropy, Quadratic Cost, etc)

Classifier (softmax, SVM, etc)

3/46

Introduction

- Normally we use a know architeture

Figura : AlexNet

1

1https://kratzert.github.io/2017/02/24/finetuning-alexnet-with-tensorflow.html

4/46

Introduction

- Define default parameters (AlexNet)

Learning rate: 0.01

Weight decay: 0.0005

Momentum: 0.9

Learning algorithm: SGD

5/46

Introduction

if acc > 90%
Right. Let’s write a paper

6/46

Introduction

if acc > 90%
Right. Let’s write a paper

else
Cry and try to change number of layers, neurons, parameters and lastly
data.

7/46

Introduction

But...

8/46

Introduction

But...

And the loss function and learning algorithm?

9/46

Introduction

But...

What about the loss function and the learning algorithm?

They don’t change anything?

10/46

Loss functions

A loss function measures the model error

It is used whenever the model is updated

The aim of the learning algorithm is to minimize this function

11/46

Loss functions

Example:

Suppose we have an advertisement on a website:

We have a bid and revenue for click.

We want to maximize our revenue by accurately predicting a click

And we want to minimize our cost

So, we have:

L(p) = ∑
i

b ∗pi − (rc ∗ yi)pi (1)

where: b = fixed bid, pi = prediction, rc = revenue and yi = right prediction

12/46

Loss functions

In this equation we have 2 parts:

A penalty when you miss a prediction.

And a cost minization part

So, we have:

L(p) = ∑i b (penalty) ∗pi − (rc ∗ yi)pi (cost minimization)

where:

b = fixed bid, pi = prediction, rc = revenue and yi = right prediction

13/46

Loss functions

In our example supposse a prediction vector (pi) and groundtruth vector (yi).

In a ideal case we have all pi == yi , so, for b = 10, rc = 20 and n = 4:

L(p) = ∑i b ∗pi (penalty) −(rc ∗ yi)pi (cost minimization)

L(p) = 4∗ (10−20) = 4∗ (−10) =−40

The worse case is when all pi ! = yi and p have only one, in this case, we have:

L(p) = 4∗10 = 40

14/46

Loss functions

For an pi = 0,1,1,0,1 and yi = 1,1,1,0,0 we have:

L(p) = ∑i b ∗pi (penalty) −(rc ∗ yi)pi (cost minimization)

L(p) = 10∗0− (20∗1)∗0+ (2)

15/46

Loss functions

For an pi = 0,1,1,0,1 and yi = 1,1,1,0,0 we have:

L(p) = ∑i b ∗pi (penalty) −(rc ∗ yi)pi (cost minimization)

L(p) = 10∗0− (20∗1)∗0+

2∗ (10∗1− (20∗1)∗1)+
(3)

16/46

Loss functions

For an pi = 0,1,1,0,1 and yi = 1,1,1,0,0 we have:

L(p) = ∑i b ∗pi (penalty) −(rc ∗ yi)pi (cost minimization)

L(p) = 10∗0− (20∗1)∗0+

2∗ (10∗1− (20∗1)∗1)+

10∗0− (20∗1)∗0+

(4)

17/46

Loss functions

For an pi = 0,1,1,0,1 and yi = 1,1,1,0,0 we have:

L(p) = ∑i b ∗pi (penalty) −(rc ∗ yi)pi (cost minimization)

L(p) = 10∗0− (20∗1)∗0+

2∗ (10∗1− (20∗1)∗1)+

10∗0− (20∗1)∗0+

10∗1− (20∗0)∗1 =−10

(5)

18/46

Loss functions
symbol name equation
L1 L1 loss ||y−o||1
L2 L2 loss ||y−o||22
L1 ◦σ expectation loss ||y−σ(o)||1
L2 ◦σ regularised expectation loss ||y−σ(o)||22
L∞ ◦σ Chebyshev loss maxj |σ(o)j − y(j)|
log log (cross entropy) loss −∑j y(j)logσ(o)j

log2 squared log loss −∑j [y
(j)logσ(o)j]2

hinge hinge (margin) loss ∑j max(0, 1
2 − ŷ(j)o(j))

hinge2 squared hinge (margin) loss ∑j max(0, 1
2 − ŷ(j)o(j))2

hinge3 cubed hinge (margin) loss ∑j max(0, 1
2 − ŷ(j)o(j))3

tan Tanimoto loss
−∑j σ(o)(j)y(j)

||σ(o)||22+||y ||22−∑j σ(o)(j)y(j)

Dcs Cauchy-Schwarz Divergence −log ∑j σ(o)(j)y(j)

||σ(o)||2||y ||2

where y is true label as one-hot coding, ŷ is true label as +1/-1, o is the output
of the last layer, σ(.) denotes probability

19/46

Loss functions - Lp

Lp is considered regressive losses

Lp applied to the probability leads to minimization of expected
misclassification probability (Lp ◦σ)

This property become Lp ◦σ robust to outliers/noise

But, these loss functions are not popular? Why?

20/46

Loss functions - Lp

It don’t have monotonic partial derivatives

Because of this, learning becomes slow in heavily misclassified examples

Proof:

C =
(y−o)2

2
(6)

where a = σ(z), where z = wx +b and σ are the sigmoid function

∂C
∂w

= (a− y)σ ′(z)x = aσ
′(z) (7)

∂C
∂b

= (a− y)σ ′(z)x = aσ
′(z) (8)

21/46

Loss functions - Lp

Let’s look for the shape of σ function

∂C
∂w = aσ ′(z) and ∂C

∂b = aσ ′(z)

2
2https://en.wikipedia.org/wiki/Talk%3ASigmoid_function

22/46

Loss functions - Cross Entropy

Log loss function (Cross entropy) minimize the same way

But, this function is not affected by slow learning

This is because σ ′(z) is eliminated in the cost equation

Therefore, it correctly penalizes heavily misclassified examples

∂C
∂wj

= 1
n ∑x xj(σ(z)− y) and ∂C

∂bj
= 1

n ∑x(σ(z)− y)

23/46

Loss functions - Hinge Loss

Hinger loss is used for ”maximum-margin” classification

Commonly used for support vector machines (SVM) for binary problems

Ex: For a output t = +/- 1 and a classifier score y the hinge loss of y is:

l(y) = max(0,1− t ∗ y)

where y = w*x + b

24/46

Loss functions - Hinge Loss

Hinger loss can be extended to the multiclass classification:

l(y) = max(0,1+maxt 6=y WtX −Wy X)3

l(y) = ∑t 6=y max(0,1+WtX −Wy X)4

3Koby Crammer e Yoram Singer. “On the algorithmic implementation of multiclass
kernel-based vector machines”. Em: Journal of machine learning research 2.Dec (2001),
pp. 265–292.

4Urün Dogan, Tobias Glasmachers e Christian Igel. “A unified view on multi-class support
vector classification”. Em: Journal of Machine Learning Research 17.45 (2016), pp. 1–32.

25/46

Loss functions - Hinge Loss

Hinger loss is a convex function, so convex optimizers in machine
learning can work (SGD):

But, it is not differentiable at ty=1!

However, there exist subgradient and smoothed versions5:

l(y) =

1
2 − ty , if ty 6 0
1
2 − (1− ty)2, if 0 < ty 6 1

0, if 1 6 ty

(9)

5Jason DM Rennie e Nathan Srebro. “Loss functions for preference levels: Regression with
discrete ordered labels”. Em: Proceedings of the IJCAI multidisciplinary workshop on
advances in preference handling. Kluwer Norwell, MA. 2005, pp. 180–186.

26/46

Loss functions - High order

High order for hinge losses help in speed and final performance

This does not hold for higher order log losses

And for Lp its help to reduce the high penalties

27/46

Loss functions

Figura : Train and test on MNIST and Cifar

6
6Katarzyna Janocha e Wojciech Marian Czarnecki. “On Loss Functions for Deep Neural

Networks in Classification”. Em: arXiv preprint arXiv:1702.05659 (2017).

28/46

Loss functions

Figura : Robust for noise in MNIST

7

7Janocha e Czarnecki, “On Loss Functions for Deep Neural Networks in Classification”.

29/46

Learning algorithm

A learn algorithm is used to teach the neural network. The most commonly
used learning algorithm is Gradient descent and there are a some others:

Newton’s method

Conjutage gradient

Quasi Newton

Levenberg Marquardt

30/46

Learning algorithm - Memory and speed comparison

Figura : Comparison of optimization methods

8
8https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network.

31/46

Learning algorithm - Gradient descent

There are three ways to use GD:

Batch gradient descent

Stochastic gradient descent

Mini-batch gradient descent

32/46

Learning algorithm - Gradient descent
Gradient descent try to minimize a loss function J(θ):

The parameters are updated following the equation bellow:

θ = θ −η ∗∇θ J(θ) (10)
9

9https://stackoverflow.com/questions/35711315/gradient-descent-vs-stochastic-gradient-
descent-algorithms

33/46

Learning algorithm - Gradient descent variations

There are some variations of gradient descent:

Momentum

Nesterov

Adagrad

Adadelta

RMSprop

Adam

34/46

Learning algorithm - Gradient descent variations -
Momentum

SGD has trouble where the surface curves much more steeply in one
dimension than in another

Momentum helps accelerate SGD in relevant direction

υt = γυt−1 +η∇θ J(θ)

θ = θ −υt

35/46

Learning algorithm - Gradient descent variations -
Momentum

Essentially, when using momentum, we push a ball down a hill.

The ball accumulates momentum as it rolls downhill.

SGD without momentum SGD with momentum

10

10http://sebastianruder.com/optimizing-gradient-descent/index.htm

36/46

Learning algorithm - Gradient descent variations -
Nesterov

But, a ball that rolls down a hill, blindly following the slope, is highly
unsatisfactory.

What if we had a ball that knows where it’s going?

υt = γυt−1 +η∇θ J(θ − γυt−1)

θ = θ −υt

37/46

Learning algorithm - Gradient descent variations -
Nesterov

Computing θ − γυt−1 thus gives us an approximation of the next position
of the parameters.

We can now calculate the approximate future position of our parameters

Figura : Nesterov update

11

11http://sebastianruder.com/optimizing-gradient-descent/index.htm

38/46

Learning algorithm - Gradient descent variations -
Adagrad

It’s adapts the learning rate to the parameters.

Larger updates for infrequent and smaller updates for frequent
parameters

gt,i = ∇θ J(θi)

θt+1,i = θt,i −η ∗gt,i

39/46

Learning algorithm - Gradient descent variations -
Adagrad

Modifies the general learning rate ∇ at each step t for each parameter θi .

It’s done based on the past gradients that have been computed for θi

θt+1,i = θt,i − η√
Gt+ε

40/46

Learning algorithm - Gradient descent variations -
Adagrad

The main benefits of Adagrad are that it eliminates the need to manually
adjust the learning rate

Its main weakness is its accumulation of square gradients in the
denominator

As each term added is positive, the accumulated sum continues to grow
during training

The learning rate eventually becomes infinitesimally small

41/46

Learning algorithm - Gradient descent variations -
Adadelta

Adadelta is an extension of Adagrad

Its tries to reduce his aggressiveness

Adadelta constrains the window of accumulated past gradients to some
fixed size w

Instead of inefficiently storing previous square gradients, the sum of the
gradients is defined recursively as a decaying average of the entire past
square gradient

θt+1,i = θt,i − η√
E[g2]t+ε

42/46

Learning algorithm - Gradient descent variations -
RMSProp and Adam

Same objective of Adadelta

Adam, RMSProp and Adadelta share the exponentially decreasing
average of square gradients

Adadelta has moving average biased by initialization of decay parameters

Adam has bias correction

43/46

Conclusion

We must pay attention to all parts of an architecture

It is difficult to choose a loss function depending on the problem

A loss function and a learning algorithm suitable for a problem can have a
major impact on performance

44/46

References I

5 algorithms to train a neural network.
https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network.

Chen, Si e Yufei Wang. “Convolutional neural network and convex
optimization”. Em: Dept. of Elect. and Comput. Eng., Univ. of California at
San Diego, San Diego, CA, USA, Tech. Rep (2014).

Crammer, Koby e Yoram Singer. “On the algorithmic implementation of
multiclass kernel-based vector machines”. Em: Journal of machine learning
research 2.Dec (2001), pp. 265–292.

CS231n Convolutional Neural Networks for Visual Recognition.
http://cs231n.github.io/neural-networks-3/.

CS231n Convolutional Neural Networks for Visual Recognition - Optimization.
http://cs231n.github.io/optimization-1/.

45/46

References II

Dogan, Urün, Tobias Glasmachers e Christian Igel. “A unified view on
multi-class support vector classification”. Em: Journal of Machine Learning
Research 17.45 (2016), pp. 1–32.

How do you decide which loss function to use for machine learning?
https://www.quora.com/How-do-you-decide-which-loss-function-to-use-for-
machine-learning.

Improving the way neural networks learn.
http://neuralnetworksanddeeplearning.com/chap3.html.

Janocha, Katarzyna e Wojciech Marian Czarnecki. “On Loss Functions for
Deep Neural Networks in Classification”. Em: arXiv preprint
arXiv:1702.05659 (2017).

Optimization for Deep Networks.
http://www.cs.cmu.edu/ imisra/data/Optimization_2015_11_11.pdf.

46/46

References III

Rennie, Jason DM e Nathan Srebro. “Loss functions for preference levels:
Regression with discrete ordered labels”. Em: Proceedings of the IJCAI
multidisciplinary workshop on advances in preference handling. Kluwer
Norwell, MA. 2005, pp. 180–186.

Ruder, Sebastian. “An overview of gradient descent optimization algorithms”.
Em: arXiv preprint arXiv:1609.04747 (2016).

