
Image Indexing
Eduardo Tavares



Image Retrieval

ü Description Based Image Retrieval (DBIR)

ü Content Based Image Retrieval (CBIR)



Levels of image retrieval

ü Level 1: Based on color, texture, shape features
ü Images are compared based on low-level features, no semantics involved

ü Level 2: Bring semantic meanings into the search
ü E.g. identifying human beings, horses, trees, beaches

ü Requires retrieval techniques of level 1

ü Level 3: Retrieval with abstract and subjective attributes
ü Find pictures of a particular birthday celebration

ü Find a picture of a happy beautiful woman

ü Requires retrieval techniques of level 2 and very complex logic



Common components of CBIR system



Problems and directions

üLow-level feature extraction
ü How to represent an image in a compact and 

descriptive way?
ü How to compare features, and, thus, images?

üHigh dimensional indexing
ü How to index huge amounts of high dimensional data?

üVisual interface for image browsing
ü How to visualize the results?



Image features



Image features



Image features



Color features



Color features

• Disadvantage of histogram: spatial color layout is not considered.
• On heterogeneous collections moments are slightly better.
• Fusion of histograms and moments can lead to better results



Texture features



Shape features



Chain codes



Local Descriptors

üFeatures for local regions in the image
ü Regions obtained by segmentation
ü Regions of interest (RoI) – around interest points 

(keypoints)

üInterest points: corners, edges and others

üKeypoints: points invariant to image 
translation, scale and rotation, and minimally 
affected by noise and small distortions



Feature Spaces

ü Feature vector – a vector of features, representing one 
image.

ü Feature space – the set of all possible feature vectors with 
defined similarity measure.



How to compare?



Problems: semantic gap

Problems: semantic gap

How to understand what is on the images?



Problems: semantic gap

How do we know that all these objects are lamps?



Problems: curse of dimensionality



Indexing techniques



2D Orthogonal Range Search

ü Search for a 2D key.

ü Range search: find all keys that lie in a 2D range.

ü Range count: number of keys that lie in a 2D range.



2D Orthogonal Range Search

Grid implementation:

ü Divide space into M-by-M grid of squares.

ü Create list of points contained in each square.

ü Range search: examine only squares that intersect 2D range query.



2D Orthogonal Range Search

Choose grid square size to tune performance.

ü Too small: wastes space

ü Too large: too many points per square



2D Orthogonal Range Search

Problem: clustering, a well-known phenomenon in geometric data.

Need a method that adapts gracefully to data.



Space-partitioning trees

Use a tree to represent a recursive subdivision of 2D space.

Grid. Divide space uniformly into squares.

2D tree. Recursively divide space into two halfplanes.

Quadtree. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



2d-tree construction

Recursively partition plane into two half-planes



Nearest Neighbor Search in a 2d tree

ü Goal: find closest point to query point



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Nearest Neighbor Search in a 2d tree



Kd-tree

Recursively partition k-dimensional space into 2 halfspaces.

Implementation: cycle trough dimensions à la 2d trees.

p 

Points whose 
ith coordinate 
is less than p’s

Points whose 
ith coordinate’s 
greater than p’s

level = i (mod k)

Adapts well to high-dimensional and clustered data
Discovered by an undergrad in an algorithm class.



Locality Sensitive Hashing (LSH)

Detection of near-duplicates

ü Similar files -> similar hash-code

For each file d:

ü Generate K-bit hash-code

ü Insert file into hash-table

ü Collision -> possible duplicate
ü Compare files in the same bucket

Can miss near-duplicates:

ü Similar hash-codes ≠ same bucket

ü Repeat L times with different hash-tables (randomized)



Locality Sensitive Hashing (LSH)

1. Want: similar hash-codes for nearby points

2. Generate random hyperplanes: h1 h2 h3



Locality Sensitive Hashing (LSH)

1. Want: similar hash-codes for nearby points

2. Generate random hyperplanes: h1 h2 h3



Locality Sensitive Hashing (LSH)

1. Want: similar hash-codes for nearby points

2. Generate random hyperplanes: h1 h2 h3



Locality Sensitive Hashing (LSH)

1. Want: similar hash-codes for nearby points

2. Generate random hyperplanes: h1 h2 h3



Locality Sensitive Hashing (LSH)
1. Want: similar hash-codes for nearby points

2. Generate random hyperplanes: h1 h2 h3

3. Compare a to points with same hash-code
• b … indeed similar to a
• d ... false positive, will be eliminated
• c ... different hash-code, will miss it



Locality Sensitive Hashing (LSH)

5. Repeat with different hyperplanes: h4 h5 h6



Acknowledgments



References

Jin, J. S. (2003). Indexing and Retrieving High Dimensional Visual Features, pages 178–
203. Springer Berlin Heidelberg, Berlin, Heidelberg.

Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., and Equitz, 
W. (1994). Efficient and effective querying by image content. Journal of Intelligent 
Information Systems, 3(3):231–262. 

Idris, F. and Panchanathan, S. (1997). Review of image and video indexing techniques. 
J. Vis. Comun. Image Represent., 8(2):146–166. 

Wang, J., Shen, H. T., Song, J., and Ji, J. (2014). Hashing for similarity search: A survey. 
CoRR, abs/1408.2927. 


