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Introduction

@ In unsupervised domain adaptations, we would like to transfer
knowledge learned from:

@ a source domain (which we have labeled data)

@ to a target domain (which we have no ground truth labels)
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@ In general, previous work either attempts to: find a mapping from
representations of the source domain to those of the target [1]
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@ Seeks to find representations that are shared between the two domains
[2], such that the features are invariant to the domain from which they are
extracted.

Source Intermediate Subspaces Target
Subspaces Subspaces

While such approaches have shown good progress, they are still not on
par with purely supervised approaches trained only on the target domain.
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@ While such approaches have shown good progress, they are still not on
par with purely supervised approaches trained only on the target domain.

@ The authors propose a novel Generative Adversarial Network
(GAN)-based architecture, which:

@ change the images from the source domain to appear as if they were
sampled from the target domain while maintaining their original content
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Proposed method

@ The method offers a number of advantages over existing domain
adaptation approaches:
@ Decoupling from the Task-Specific Architecture
Generalization Across Label Spaces
Training Stability
Data Augmentation
Interpretability
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@ Formally definition'
o Let X = {x{,ys}V o’ a labeled dataset of N° samples from the source
domain
o Let X' = {x{}V 0, an unlabeled dataset of N’ samples from the target
domain.
@ The pixel adaptation model consists of:
@ A generator function G(x%,z; 8g) — x'
e parameterized by 65
o that maps a source domain image x; € X® and a noise vector z ~ p,
to an adapted, or fake, image x!
@ Given the generator function G, it is possible to create a new dataset
X' = {G(x%,2),y°} of any size.
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Learning

@ Furthermore, the model is augmented by a discriminator function
D(x; 6p) that outputs the likelihood 'd’ that a given image x has been
sampled from the target domain.

@ The discriminator tries to distinguish between ’fake’ images X' produced
by the generator, and real’ images from the target domain X!

@ Note that in contrast to the standard GAN formulation, the model’'s
generator is conditioned on both a noise vector and an image from the
source domain.

@ In addition to the discriminator, the model is also augmented with a
classifier T(x; 07) — y’ which assigns task-specific labels ? to images
x € {X" x"}
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Learning

@ Our goal is to optimize the following minimax objective:

min max = alLg(D,G) + BL(G,T)
6,61 6p

@ where:
L4(D, G) represents the domain loss
L7(G, T) is a task-specific loss (softmax cross-entropy loss)
o and f3 control the interaction of losses
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@ Notice that the model train T with both adapted and non-adapted source
images

@ When training T only on adapted images, it's possible to achieve similar
performance but doing so may require many runs with different
initializations due to the instability of the model.

@ Found that training classifier T on both source and adapted images
avoids this scenario and greatly stabilizes training.

@ Finally, it's important to reiterate that once trained, free to adapt other
images from the source domain which might use a different label space.
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@ G is a convolutional neural network with residual connections that
maintains the resolution of the original image.

@ Our discriminator D is also a convolutional neural network. The minimax
optimization is achieved by alternating between two steps.

@ 1) During the first step, we update the discriminator and task-specific
parameters Op, O, while keeping the generator parameters 0 fixed.

@ 2) During the second step we fix 8p, 67 and update 65
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Overview of the model architecture
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Evaluation

@ The method was evaluated in the following datasets:
o MNIST, MNIST-M, USPS, and a variation of LINEMOD

@ Qualitative and quantitative evaulation components, using a number of
unsupervised domain adaptation scenarios

e Qualitative: Visually inspecting the generated images.

e Quantitative: comparison of the performance of previous models work and
to "Source Only" and "Target Only" baselines that do not use any domain
adaptation.

@ MNIST to USPS
@ MNIST to MNIST-M
@ Synthetic Cropped LineMod to Cropped LineMod
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Quantitative Results

Model MNIST to | MNIST to

USPS MNIST-M
| SourceOnly | 789 | 63.6(56.6) |

CORAL [41] 81.7 57.7

MMD [45}(31] 81.1 76.9

DANN [14] 85.1 77.4

DSN [5] 91.3 83.2

CoGAN [30] 91.2 62.0

Our model 95.9 98.2

Targetonly [ 965 | 96.4(959) |
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Quantitative Results

Cropped Linemod to Cropped Linemod” scenario.

Model Classification | Mean Angle
Accuracy Error
| Source-only |  47.33% 89.2°
MMD [45]131] 72.35% 70.62°
DANN [14] 99.90% 56.58°
DSN [5] 100.00% 53.27°
Our model 99.98% 23.5°
| Target-only | 100.00% 6.47°
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Qualitative Results

(b) Examples generated by our model, trained on Linemod.
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Quantitative Results

Figure 3. Visualization of our model’s ability to generate samples
when trained to adapt MNIST to MNIST-M. (a) Source images x°*
from MNIST; (b) The samples adapted with our model G(x°, z)
with random noise z; (c) The nearest neighbors in the MNIST-M
training set of the generated samples in the middle row. Differ-
ences between the middle and bottom rows suggest that the model
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Quantitative Results
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Figure 4. Visualization of our model’s ability to generate samples when trained to adapt Synth Cropped Linemod to Cropped Linemod. Top
Row: Source RGB and Depth image pairs from Synth Cropped LineMod x°; Middle Row: The samples adapted with our model G(x?, z)
with random noise z; Bottom Row: The nearest neighbors between the generated samples in the middle row and images from the target
training set. Differences between the generated and target images suggest that the model is not memorizing the target dataset.

18/23



Quantitative Results: Sensitivity to Used Backgrounds

Model-RGB-only Classification | Mean Angle
Accuracy Error
Source-Only-Black 47.33% 89.2°
Source-Only—INet 91.15% 50.18°
Our Model-Black 94.16% 55.74°
Our Model-INet 96.95% 36.79°
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Quantitative Results: Generalization of the Model

Table 4. Performance of our model trained on only 6 out of 11
Linemod objects. The first row, ‘Unseen Classes,” displays the per-
formance on all the samples of the remaining 5 Linemod objects
not seen during training. The second row, ‘Full test set,” displays
the performance on the target domain test set for all 11 objects.

Test Set Classification | Mean Angle
Accuracy Error

Unseen Classes 98.98% 31.69°
Full test set 99.28% 32.37°
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Quantitative Results: Stability Study

Table 5. The effect of using the task and content losses L, L. on
the standard deviation (std) of the performance of our model on the

“Synth Cropped Linemod to Linemod” scenario.

L;}aurce

means

. dapted

we use source data to train 7', Ly““""*" means we use generated
data to train 7'; L. means we use our content—similarity loss. A
lower std on the performance metrics means that the results are

more easily reproducible.

[zouree odapted | Classification | Mean Angle
¢ ¢ | Accuracy std Error std
- - - 23.26 16.33
- v - 22.32 17.48
v v - 2.04 3.24
v v v 1.60 6.97
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Quantitative Results: Stability Study

Table 6. Semi-supervised experiments for the “Synthetic Cropped
Linemod to Cropped Linemod” scenario. When a small set of
1,000 target data is available to our model, it is able to improve
upon baselines trained on either just these 1,000 samples or the
synthetic training set augmented with these labeled target samples.

Method Classification | Mean Angle
Accuracy Error
1000-only 99.51% 25.26°
Synth+1000 99.89% 23.50°
Our model 99.93% 13.31°
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Conclusions

@ They are able to do so by using a GAN?based technique, stabilized by
both a task-specific loss and a novel content?similarity loss.

@ decouples the process of domain adaptation from the task-specific
architecture

@ provides the added benefit of being easy to understand via the
visualization of the adapted image outputs of the model.
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