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Introduction

@ High resolution images contains a lot of complex objects with various
sizes

12014 IEEE GRSS Data Fusion Contest.
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Introduction

@ Many objects in this image have high intra-class variance and low
inter-class variance. (Grey roofs and roads, for example)
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Introduction

@ Features at different levels need to be extracted and jointly combined to
fulfill the segmentation task

@ High level and abstract features are more suitable for large and confused
objects

@ While small objects benefit from low-level and raw features

@ In traditional way, we only use high-level features and the low-level feature
maps are discarded
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Introduction

RGB Image

Convolutional Encoder-Decoder

Pooling Indices

I conv + Batch Normalisation + RelU

I Fooling [ Upsampling Softmax

output

Segmentation

Figura : Segnet

3Vijay Badrinarayanan, Alex Kendall e Roberto Cipolla. “Segnet: A deep convolutional

encoder-decoder architecture for image segmentation”. Em: arXiv preprint arXiv:1511.00561

(2015).
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Introduction
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Figura : UNet

4
" 40laf Ronneberger, Philipp Fischer e Thomas Brox. “U-net: Convolutional networks for

biomedical image segmentation”. Em: International Conference on Medical Image Computing

and Computer-Assisted Intervention. Springer. 2015, pp. 234-241. 6/37




Introduction

Without feature selection:

@ Redundant information can result in oversegmentation when the model
tends to receive more information from lower layers

@ Fine-grained details can be lose and lead to under-segmentation when
the networks tens to receive more information from upperlayers
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Introduction
Hypothesis

@ Is using all the features really the best alternative?
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Introduction
Hypothesis

@ Is using all the features really the best alternative?

e If no. How to make a selection?
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Introduction
Entropy

@ Generally, entropy refers to disorder or uncertainty

H(x) = E[~loga(pi(x))] = — Zp/ x)logz(pi(x)) (1)

i=1

where:

E[.] denotes expectation over all the k categories
pi(x) is the probability of pixel x belonging to category i
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Introduction
Entropy

P(x) =[0.8,0.1,0.1]  /0g.0.8 = —0.3219  l0g»0.1 = —3.3219
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Introduction
Entropy
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Introduction
Entropy

P(x) =[0.8,0.1,0.1] log»0.8 = —0.3219 log20.1 = —3.3219

H(x) = E[~logx(pi(x))] = — L1 pi(x)loga(pi(x))

H(x) = —[(0.8x(—0.3219)) + (0.1x(—3.3219)) + (0.1x(—3.3219))]
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Introduction
Entropy
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Introduction
Entropy

P(x) =[0.8,0.1,0.1]  /0g.0.8 = —0.3219  l0og»0.1 = —3.3219

H(x) = E[~logs(pi(x))] = — L1 pi(x)loga(pi(x))
H(x) = —[(0.8x(—0.3219)) + (0.1x(—3.3219)) + (0.1x(—3.3219))]
H(x) = —[-0.257522 4 (—0.33219) + (—0.33219)]

H(x) = —[—0.9219]
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Introduction
Entropy

P(x) =[0.8,0.1,0.1]  l0g:0.8=—0.3219  log,0.1 = —3.3219
H(x) = E[~loga(pi(x))] = — LI pi(x)loga(pi(x))

H(x) = —[(0.8x(—0.3219)) + (0.1x(—3.3219)) + (0.1x(—3.3219))]
H(x) = —[—0.257522 + (—0.33219) + (—0.33219)]

H(x) = —[—0.9219]

H(x) = 0.9219
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Introduction
Entropy

P(x) =[0.8,0.1,0.1]  H(x)=0.9219
P(x) =[0.5,04,0.1]  H(x)=1,3601

P(x) =[0.3,0.3,0.4]  H(x)=1,5709

When the entropy of pixel x is maximized p(x) approximates an uniform
probability distribution. In this case, the network is unable to classify this pixel
using only existing information
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Introduction
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(d) error map (e) Information entropy heat map
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Approach

@ Features are extracted in a pretrained ResNet

ResNet-101

w/2
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Approach

@ Each set of features is submitted to a convolutional layer followed by

RCM module

ResNet-101

w/2
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Approach

@ RCM module are based in residual blocks in ResNet and is used
to ease the training and avoid the gradient vanishing problem

w/2

ResNet-101
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Approach

@ Each pair of output of RCM module is used as input for the ECM
module starting from the higher layer until the low layer

ResNet-101
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Approach

@ The ECM module is used to fuse higher feature maps and low featur

maps

The structure of RCM -~

ResNet-101
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Approach

Ffusion — (H[fupper ® wl*l] Gflower) @fupper
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Approach
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Approach

Ffusion — (H[fupper ® wl*l] Gflower) @fupper
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Approach

Ffusion — (H[fupper ® wl*l] Gflower) @fupper
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Approach

Ffusion — (H[fupper ® wl*l] Gflower) @fupper
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Approach
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Approach

Ffusion — (H[fupper ® wl*l] Gflower) @fupper
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Approach

ResNet-101

w/2

@ The final architeture is used to classify the test image
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Experimental evaluation

Dataset

2000px

0 01 02

—
Kilometers

2500px

& -
PATREQ

- 16 tiles are used ( 12 for train and 4 for validation)
- Each tile 2500x2000 pixels with 9 cm of resolution
- Manually classified into six classes

- Metrics: F1 score and Overall Accuracy

F1 =2 x precision x recall
precision + recall

precision= TP recall = TP
TP + FP TP+ EN
Overrall Accuracy = (TP +TN)

(TP +TN + FP+ FN)

TP = true positive
TN = true negative
FP = false positive
FN = false negative

Figure: Overview of the ISPRS 2D Vaihingen Labelling dataset. There are 33 tiles. Numbers in the figure refer to the individual flag.
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Experimental evaluation

@ Baseline - GSN without entropy control module
@ GSN\GSN_noL - GSN with\without auxiliary loss in ECM, respectively
@ GSN_w - classes with different weigths

@ GSN_w_ mc - with sliding window overlap and multi-scale input

Method Imp Surf Building Low_veg Tree Car  Overall Accuracy Mean F; Score

baseline 87.6% 93.2% 73.3% 86.9% 54.1% 86.1% 79.0%
GSN 89.2% 94.5% 74.9% 87.5% 79.8% 87.9% 85.2%
GSN_noL 89.1% 94.3% 74.7% 87.4% 78.7% 87.8% 84.8%
GSN_w 89.5% 94.4% 75.9% 87.8%  80.9% 88.3% 85.7%

GSN_w_mc 90.2% 94.8% 76.9% 88.3% 82.3% 88.9% 86.5%
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Experimental evaluation

Method Imp Surf Building Low_veg Tree Car  Overall Accuracy Mean F; Score
baseline 87.6% 93.2% 73.3% 86.9% 54.1% 86.1% 79.0%
[ GSN 89.2% 94.5% 74.9% 87.5% 79.8% 87.9% 85.2% |
GSN_noL 89.1% 94.3% 74.7% 87.4%  78.7% 87.8% 84.8%
GSN_w 89.5% 94.4% 75.9% 87.8%  80.9% 88.3% 85.7%
GSN_w_mc 90.2% 94.8% 76.9% 88.3% 82.3% 88.9% 86.5%
Method Imp Surf Building Low_veg Tree Car  Overall Accuracy Mean F; Score
FCN-8s [12] 87.1% 91.8% 75.2% 86.1% 63.8% 85.9% 80.8%
SegNet [14] 82.7% 89.1% 66.3%  83.9% 55.7% 82.1% 75.5%
Deeplab-v2 [21] 88.5% 93.5% 73.9% 86.9%  84.7% 86.9% 83.5%
RefineNet [15] 88.1% 93.3% 740%  87.1% 65.1% 86.7% 81.5%
[ GSN 89.2% 94.5% 749%  87.5% 79.8% 87.9% 85.2% |
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Experimental evaluation

@ Evalation of the ISPRS organizers

Method Imp Surf Building Low_veg Tree Car Overall Accuracy Mean F; Score
UPB [43] 87.5% 89.3% 77.3% 85.8% 77.1% 85.1% 83.4%
ETH_C [44] 87.2% 92.0% 77.5% 87.1% 54.5% 85.9% 79.7%
UOA [45] 89.8% 92.1% 80.4% 88.2% 82.0% 87.6% 86.5%
ADL_3[26] 89.5% 93.2% 82.3% 88.2%  63.3% 88.0% 83.3%
RIT_2 [46] 90.0% 92.6% 81.4% 88.4% 61.1% 88.0% 82.7%
DST 2[8] 90.5% 93.7% 83.4% 89.2% 72.6% 89.1% 85.9%
ONE_7 [47] 91.0% 94.5% 84.4% 89.9% 77.8% 89.8% 87.5%
DLR_9 [28] 92.4% 95.2% 83.9% 89.9% 81.2% 90.3% 88.5%
GSN 92.2% 95.1% 83.7% 89.9% 82.4% 90.3% 88.7%
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Experimental evaluation )
@ Visual comparisons between GSN and other related methods on ISP

test set

(aiage (b) UPB (c) UOA (d)RIT_2 (e) DST_2 (f) GSN
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Conclusions

@ The ECM can effectively help for integrating contextual information from
the upper layers and details from the lower layers

@ The approach has the potential to perform better. Actually, the pixels in a
certain region are interrelated. However, we calculate the entropy map

(gate) pixel-to-pixel, which ignores the relationships between surrounding
pixels.
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