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Summary

ü Supervised deep hash approach to construct binary hash codes 
from labeled data for large-scale image search. 

ü Assumption: semantic labels are governed by several latent 
attributes on which classification relies. 

ü Classification and retrieval are unified.

ü Joint learning of image representations, hash codes, and 
classification in a point-wised manner .
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CBIR
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Hashing
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ü Hash function: any function 𝓗which has, 
as a minimum, the following two 
properties:

ü Compression

ü ease of computation
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ü Hash function: any function 𝓗which has, 
as a minimum, the following two 
properties:

ü Compression

ü ease of computation

ü Key principle in devising hash functions: 
map images of similar content to similar 
binary codes .



Learning to hash

ü Learned binary codes are more efficient than the ones produced 
by locality sensitive hashing (LSH) .
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Learning to hash

ü Learned binary codes are more efficient than the ones produced 
by locality sensitive hashing (LSH) .

ü Supervised hashing: exploits supervised information (e.g., 
pairwised similarities or triple-wised rankings devised by data 
labels) during the hash function construction.
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Learning to hash

ü Learned binary codes are more efficient than the ones produced 
by locality sensitive hashing (LSH) .

ü Supervised hashing: exploits supervised information (e.g., 
pairwised similarities or triple-wised rankings devised by data 
labels) during the hash function construction.

ü Pairs or triplets of the training samples: require long computation 
time and high storage cost for training. 

ü Learning binary codes in a point-wised manner would be a better 
alternative for the scalability of hash. 
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Deep Convolutional Neural Networks

ü Capable of learning rich mid-level representations for image 
classification, object detection, and semantic segmentation.

ü Transfer learning: feature extractors in new domains

ü Fine-tuning

ü Inductive transfer learning: one cannot learn how to walk before 
crawl, or how to run before walk.
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Hypothesis

ü Beyond classification, is the “pre-train + fine-tune”
scheme also capable of learning binary hash codes
for efficient retrieval? Besides, if it is, how to modify
the architecture of a pre-trained CNN to this end?
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Semantics-preserving Deep Hashing (SSDH) 

ü Constructs hash functions as a hidden layer between image
representations and classification outputs in a CNN

ü Binary codes are learned by minimizing an objective function
defined over classification error and other desired properties
on the binary codes.
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Semantics-preserving Deep Hashing (SSDH) 

ü Goal: design a supervised hashing algorithm that exploits the 
semantic labels to create binary codes of the following 
properties: 

ü The codes respect the semantic similarity between image labels. 
Images that share common class labels are mapped to same (or 
close) binary codes. 

ü The bits in a code are evenly distributed and discriminative. 
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Architecture overview
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To incorporate the deep representations into the hash function learning, a latent 
layer H with K units is added to the top of layer F7.



Deep Hashing Functions 

ü This latent layer is fully connected to F7 and uses the sigmoid units 
so that the activations are between 0 and 1. 

ü Let WH ∈ℝd x K denote the weights between F7 and the latent 
layer. For a given image In with the feature vector 𝒶7

n∈ℝ
d in layer 

F7, the activations of the units in H can be computed as 𝒶H
n = 𝜎(𝒶7

n
WH + bH), where 𝒶H

n is a K-dimensional vector, bH is the bias term 
and 𝜎(.) is the logistic sigmoid function.

ü The binary encoding function is given by:

𝓫n = (sgn(𝜎(𝒶7
n WH + bH) – 0.5) + 1)/2
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Label Consistent Binary Codes 

ü Assumption: semantic labels can be derived from a set of K latent 
concepts (or hidden attributes).

ü When an input image is associated with binary-valued outputs (in 
{0,1}K), the classification is dependent on these hidden attributes.

ü Implication: through an optimization of a loss function defined on 
the classification error, ensure that semantically similar images are 
mapped to similar binary codes. 
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Label Consistent Binary Codes 

ü Consider a matrix WC ∈ℝK x M that performs a linear mapping of 
the binary hidden attributes to the class labels. 

ü Incorporating such matrix amounts to adding a classification layer 
to the top of the latent layer.

ü In terms of the classification formulation, to solve WC optimize the 
following objective function: 
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L(.) = loss function, W = weights of the network,𝛄 = importance of regularization term 



Label Consistent Binary Codes 

ü The choice of the loss function depends on the problem itself. 

ü For single-label classification, uses AlexNet’s cross-entropy error 
function: 

ü For multi-label classification:
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Efficient Binary Codes 

ü Besides semantically similar images having similar binary codes, 
we want the activation of each latent node to approximate to 
{0,1}. Since it has been activated by a sigmoid function, its value is 
inside the range [0,1].

ü Going further: add the constraint of maximizing the sum of 
squared errors between the latent layer activations and o.5:

e =K-dimensional vector with all elements 1.
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Efficient Binary Codes 

ü To make the binary codes balanced, we hope that there is no 
preference for the hidden values to be 0 or 1. 

ü That is, the occurrence probability of each bit’s on or off is the 
same, or the entropy of the discrete distribution is maximized.

ü We want each bit to fire 50% of the time via minimizing:
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Efficient Binary Codes 

ü In sum, we aim to optimize the following objective to obtain the binary 
codes: 

ü The first term encourages the activations of the units in H to be close to 
either 0 or 1 and the second term further ensures that the output of each 
node has a nearly 50% chance of being 0 or 1.

ü Each loss term is contributed by only an individual training sample and no 
cross-sample terms are involved. Hence, the objective remains point-
wised and can be minimized through SGD efficiently by dividing the 
training samples (but not pairs or triples of them) into batches. 
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Overall Objective and Implementation 
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Entire objective function: 

The initial weights in layers F1-7 of the network are set as the pre-trained ones and the 
remaining weights are randomly initialized. SGD is applied in conjunction with 
backpropagation with mini-batches.



Experiments
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CIFAR-10: tiny objects
NUS-WIDE: web images
MNIST: handwritten digits
UT-ZAP50K: catalog images
SUN397, Oxford, and Paris: scene images 
The large datasets, Yahoo-1M and ILSVRC: product and object images with heterogeneous 
types, respectively.



Evaluation protocols

ü Mean average precision (mAP): indicator of the overall 
performance of hash functions; 

ü Precision at k samples: It is computed as the percentage of true 
neighbors among the top k retrieved images; 

ü Precision within Hamming radius r: We compute the precision of 
the images in the buckets that fall within the Hamming radius r of 
the query image, where r = 2 is selected as previous works did. 

23



Results

24



Results

25



Results

26



Results

27



Results

28



Acknowledgments

29


