Using Ranking-CNN for Age Estimation[1]

Shixing Chen¹ Caojin Zhang² Ming Dong¹ Jialiang Le³ Mike Rao³

¹Department of Computer Science Wayne State University ²Department of Mathematics Wayne State University

³Research & Innovation Center Ford Motor Company

1

6th October, 2017

Agenda

1 Introduction

- Motivations
- Overview and Contributions
- 2 Related Works

3 Approach

- Architecture
- Training
- Ranking-CNN

4 **Experiments**

- Dataset
- Baselines
- Results

5 Conclusion

Introduction

- Age estimation importance
- Many feature extraction techniques
- Estimation models

— Motivations

Motivations

- Performance improvements using deep learning
- Existing approaches ignore age-related ordinal information (multi-class classification) or over-simplify the problem to a linear model (regression)

— Overview

Overview and Contributions

 A Ranking-CNN model that contains a series of basic CNNs to estimate age based on face images

– Contributions

Overview and Contributions

The main contributions are:

- Each basic CNN is trained for an age group independently, leading to better performance and preventing overfitting
- Takes the ordinal relation between ages: more likely to get smaller estimation errors when compared with multi-class classification approaches

Related Works

Related Works

- Early estimation models (handcrafted feature extraction techniques)
 - Active Appearance Model (AAM)
 - □ AGing pattErn Subspace (AGES)
 - □ Bio Inspired Features (BIF)
 - General purpose features, such as LBP or HOG.
- More recently: CNN-based methods
- Ranking based approach with scattering transform (ST) proposed by Chang et al.[2]

– Approach

Approach

Ranking-CNN for Age Estimation

- Uses a series of basic binary CNNs with ordinal age labels.
- Each basic binary CNN categorizes samples into two groups: either higher or lower than a certain age
- The binary outputs of all basic CNNs are aggregated to make the final age prediction.

Using Ranking-CNN for Age Estimation [1]

– Approach

- Architecture

Architecture

– Approach

— Training

Training

Consists of two stages:

- A base network is pre-trained with unconstrained facial images.
- From the base network, a series of basic binary CNNs with ordinal age labels is trained.
- Assuming k age groups, k-1 basic binary CNNs are trained from the base one.
- To train the k-th binary CNN, the entire dataset D is split into two subsets, with ages higher or lower (or equal to) than max(ages(k)).

– Approach

— Ranking-CNN

Ranking-CNN

- Given an unknown input x_i, the basic binary CNNs output a set of binary decisions
- The binary decisions are aggregated to make the final prediction $r(x_i)$ $r(x_i) = 1 + \sum_{i=1}^{K-1} [f_k(x_i) > 0].$

 $f_k(x_i)$ is the output of the basic CNN [v] - truth operator: 1, if v is true 0, otherwise.

The final ranking error is bounded by the maximum error of the binary rankers.

- Experiments

— Dataset

Experiments

• Dataset: MORPH Album 2

Samples selected in the range between 16 and 66 years old: 51 age groups - 50 binary rankers are needed.

The age and gender information of the 54,362 samples randomly selected from MORPH Album 2.

	<20	20-29	30-39	40-49	>50	Total
Male	6543	13849	12322	9905	3321	45940
Female	829	2291	2886	1975	441	8422
Total	7372	16140	15208	11880	3762	54362

- Experiments

— Baselines

Experiments

- Baselines
 - BIF+OLPP
 - 🗅 ST
 - Multi-class CNN techniques

- Experiments

— Results

Experiments

Results

MAE among different combinations of features and estimators

		ENGINEERED FEATURES		LEARNED FEATURES		
		BIF+OLPP	ST	CNN FEATURE	RANKING-CNN FEATURE	
CLASSIFICATION	SVM	4.99	5.15	3.95	-	
MODEL	MULTI-CLASS CNN	-	-	3.65	-	
RANKING	RANKING-SVM	5.03	4.88	-	3.63	
MODEL	RANKING-CNN	-	-	-	2.96	

MAE among different CNN-based techniques

	Ranking-CNN	MR-CNN	OR-CNN	DEX
MAE	2.96	3.27	3.34	3.25

Ordinal Regression with CNN (OR-CNN) Metric Regression with CNN (MR-CNN) [3] Deep EXpectation (DEX) [4] Using Ranking-CNN for Age Estimation [1]

- Experiments

— Results

Experiments

• Results

15

Using Ranking-CNN for Age Estimation [1]

- Experiments

— Results

Experiments

Results

Conclusion

Conclusion

- The proposed method outperforms state-of-the-art age estimation methods
- Taking ordinal relation between ages into consideration seems to be a good strategy to approach the age estimation task

- References

References

- S. Chen, C. Zhang, M. Dong, J. Le, M. Rao.
 Using Ranking-CNN for Age Estimation
 In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- K.Y. Chang, C.S. Chen.
 A learning framework for age rank estimation based on face images with scattering transform. In IEEE Transactions on Image Processing, 24(3):785–798, 2015.
- [3] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua.
 Ordinal regression with multiple output cnn for age estimation.
 In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
- [4] R. Rothe, R. Timofte, and L. Van Gool.
 Deep expectation of real and apparent age from a single image without facial landmarks.
 In International Journal of Computer Vision, pages 1–14, 2016.