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I— Introduction

Introduction

® Age estimation importance
® Many feature extraction techniques

® Estimation models
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I— Introduction
I— Motivations

Motivations

® Performance improvements using deep learning

e Existing approaches ignore age-related ordinal
information (multi-class classification) or over-simplify
the problem to a linear model (regression)
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I— Introduction

I— Overview

Overview and Contributions

¢ A Ranking-CNN model that contains a series of basic
CNNs to estimate age based on face images
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I— Introduction

I— Contributions

Overview and Contributions

The main contributions are:

e Each basic CNN is trained for an age group
independently, leading to better performance and
preventing overfitting

® Takes the ordinal relation between ages: more likely
to get smaller estimation errors when compared with

multi-class classification approaches
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Related Works

e Early estimation models (handcrafted feature
extraction techniques)
. Active Appearance Model (AAM)
d AGing pattErn Subspace (AGES)
d Bio Inspired Features (BIF)
4 General purpose features, such as LBP or HOG.
® More recently: CNN-based methods
® Ranking based approach with scattering transform
(ST) proposed by Chang et al.[2]
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L Approach

Approach

Ranking-CNN for Age Estimation

® Uses a series of basic binary CNNs with ordinal age
labels.

® Each basic binary CNN categorizes samples into two
groups: either higher or lower than a certain age

® The binary outputs of all basic CNNs are aggregated
to make the final age prediction.
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I— Architecture

Architecture
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L Training

Training

Consists of two stages:

® A base network is pre-trained with unconstrained
facial images.

® From the base network, a series of basic binary CNNs
with ordinal age labels is trained.

e Assuming k age groups, k-1 basic binary CNNs are
trained from the base one.

® To train the k-th binary CNN, the entire dataset D is
split into two subsets, with ages higher or lower (or
equal to) than max(ages(k)).
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L Ranking-CNN

Ranking-CNN

® Given an unknown input x., the basic binary CNNs
output a set of binary decisions

® The binary decisions are aggregated to make the final
prediction r(x)

| K—1
! r(x;)) =1+ Z fr(xi) > 0).
k=1

f (x.) is the output of the basic CNN
[ v ] - truth operator: 1, if v is true
0, otherwise.

® The final ranking error is bounded by the maximum
error of the binary rankers.
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L Experiments

I— Dataset

Experiments

e Dataset: MORPH Album 2

Samples selected in the range between 16 and 66 years old:
51 age groups - 50 binary rankers are needed.

The age and gender information of the 54,362 samples
randomly selected from MORPH Album 2.

<20 20-29 30-39 40-49 >50  Total
Male 6543 13849 12322 9905 3321 45940

Female | 829 2291 2886 1975 441 8422
Total 7372 16140 15208 11880 3762 54362
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L Experiments

I— Baselines

Experiments

® Baselines
d BIF+OLPP
d ST

d  Multi-class CNN techniques
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L Experiments

I— Results

Experiments
® Results
MAE among different combinations of features and estimators

ENGINEERED FEATURES LEARNED FEATURES
BIF+OLPP ST CNN FEATURE RANKING-CNN FEATURE

CLASSIFICATION SVM 4.99 5.15 3.95 -

MODEL MULTI-CLASS CNN - - 3.65 -

RANKING RANKING-SVM 5.03 4.88 - 3.63

MODEL RANKING-CNN - - - 2.96

MAE among different CNN-based techniques
Ranking-CNN | MR-CNN | OR-CNN | DEX

MAE 2.96 3.27 3.34 3.25

Ordinal Regression with CNN (OR-CNN)
Metric Regression with CNN (MR-CNN) [3]
Deep EXpectation (DEX) [4]
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L Experiments

I— Results

Experiments
® Results

085
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L Experiments

I— Results
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Conclusion

® The proposed method outperforms state-of-the-art
age estimation methods

® Taking ordinal relation between ages into

consideration seems to be a good strategy to
approach the age estimation task
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