Using Ranking-CNN for Age Estimation[1]

Shixing Chen ${ }^{1}$ Caojin Zhang ${ }^{2}$ Ming Dong ${ }^{1}$ Jialiang Le ${ }^{3} \quad$ Mike Rao 3
${ }^{1}$ Department of Computer Science Wayne State University
${ }^{2}$ Department of Mathematics
Wayne State University
${ }^{3}$ Research \& Innovation Center Ford Motor Company
$6^{\text {th }}$ October, 2017

DCC

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Agenda

1 Introduction

- Motivations
- Overview and Contributions

2 Related Works
3 Approach

- Architecture
- Training
- Ranking-CNN

4 Experiments

- Dataset
- Baselines
- Results

5 Conclusion

Introduction

- Age estimation importance
- Many feature extraction techniques
- Estimation models

Motivations

- Performance improvements using deep learning
- Existing approaches ignore age-related ordinal information (multi-class classification) or over-simplify the problem to a linear model (regression)

L_ Introduction
\qquad

Overview and Contributions

- A Ranking-CNN model that contains a series of basic CNNs to estimate age based on face images

Overview and Contributions

The main contributions are:

- Each basic CNN is trained for an age group independently, leading to better performance and preventing overfitting
- Takes the ordinal relation between ages: more likely to get smaller estimation errors when compared with multi-class classification approaches

Related Works

- Early estimation models (handcrafted feature extraction techniques)
- Active Appearance Model (AAM)

A AGing pattErn Subspace (AGES)

- Bio Inspired Features (BIF)
\square General purpose features, such as LBP or HOG.
- More recently: CNN-based methods
- Ranking based approach with scattering transform (ST) proposed by Chang et al.[2]

Approach

Ranking-CNN for Age Estimation

- Uses a series of basic binary CNNs with ordinal age labels.
- Each basic binary CNN categorizes samples into two groups: either higher or lower than a certain age
- The binary outputs of all basic CNNs are aggregated to make the final age prediction.

Using Ranking-CNN for Age Estimation [1]

Approach

Architecture

Architecture

Training

Consists of two stages:

- A base network is pre-trained with unconstrained facial images.
- From the base network, a series of basic binary CNNs with ordinal age labels is trained.
- Assuming k age groups, $k-1$ basic binary CNNs are trained from the base one.
- To train the k-th binary CNN, the entire dataset D is split into two subsets, with ages higher or lower (or equal to) than max(ages(k)).

Ranking-CNN

- Given an unknown input x_{i}, the basic binary CNNs output a set of binary decisions
- The binary decisions are aggregated to make the final prediction $\mathrm{r}\left(\mathrm{x}_{\mathrm{i}}\right)$

$$
r\left(x_{i}\right)=1+\sum_{k=1}^{K-1}\left[f_{k}\left(x_{i}\right)>0\right] .
$$

$\mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}\right)$ is the output of the basic CNN
[v] - truth operator: 1 , if v is true
0 , otherwise.

- The final ranking error is bounded by the maximum error of the binary rankers.

Experiments

- Dataset: MORPH Album 2

Samples selected in the range between 16 and 66 years old: 51 age groups - 50 binary rankers are needed.

The age and gender information of the 54,362 samples randomly selected from MORPH Album 2.

	<20	$20-29$	$30-39$	$40-49$	>50	Total
Male	6543	13849	12322	9905	3321	45940
Female	829	2291	2886	1975	441	8422
Total	7372	16140	15208	11880	3762	54362

Experiments

- Baselines
- BIF+OLPP
- ST
- Multi-class CNN techniques

Using Ranking-CNN for Age Estimation [1]

Experiments
L_ Results

Experiments

- Results

MAE among different combinations of features and estimators

| | | ENGINEERED FEATURES | | LEARNED FEATURES | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | | BIF+OLPP | ST | CNN FEATURE | RANKING-CNN FEATURE |
| CLASSIFICATION | SVM | 4.99 | 5.15 | 3.95 | - |
| MODEL | MULTI-CLASS CNN | - | - | 3.65 | - |
| RANKING | RANKING-SVM | 5.03 | 4.88 | - | 3.63 |
| MODEL | RANKING-CNN | - | - | - | $\mathbf{2 . 9 6}$ |

MAE among different CNN-based techniques

	Ranking-CNN	MR-CNN	OR-CNN	DEX
MAE	$\mathbf{2 . 9 6}$	3.27	3.34	3.25

Ordinal Regression with CNN (OR-CNN)
Metric Regression with CNN (MR-CNN) [3]
Deep EXpectation (DEX) [4]

Using Ranking-CNN for Age Estimation [1]

Experiments
L_ Results

Experiments

- Results

Accuracy of each binary ranker in ranking models.

Using Ranking-CNN for Age Estimation [1]

Experiments

L_ Results

Experiments

Results

Comparison on Cumulative Score with L in $[0,10]$.
L (age error tolerance range) from 0 to 10

Conclusion

- The proposed method outperforms state-of-the-art age estimation methods
- Taking ordinal relation between ages into consideration seems to be a good strategy to approach the age estimation task

References

[1] S. Chen, C. Zhang, M. Dong, J. Le, M. Rao. Using Ranking-CNN for Age Estimation In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[2] K.Y. Chang, C.S. Chen.
A learning framework for age rank estimation based on face images with scattering transform. In IEEE Transactions on Image Processing, 24(3):785-798, 2015.
[3] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua. Ordinal regression with multiple output cnn for age estimation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[4] R. Rothe, R. Timofte, and L. Van Gool.
Deep expectation of real and apparent age from a single image without facial landmarks. In International Journal of Computer Vision, pages 1-14, 2016.

